Stereoselective Hydrocoupling of [(1*R*)-*exo*]-3-*exo*-(Diphenylmethyl)bornyl Cinnamates by Electroreduction

LETTERS 2001 Vol. 3, No. 21 3241–3244

ORGANIC

Naoki Kise,* Keisuke Iwasaki, Naohiko Tokieda, and Nasuo Ueda

Department of Biotechnology, Faculty of Engineering, Tottori University, Tottori 680-8552, Japan.

kise@bio.tottori-u.ac.jp

Received August 13, 2001

ABSTRACT

The chiral auxiliary [(1R)-*exo*]-3-*exo*-(diphenylmethyl)borneol, synthesized from (1R)-(+)-camphor in three steps, was highly effective for the stereoselective hydrocoupling of its cinnamates by electroreduction. From the resulting hydrodimers, (3R,4R)-3,4-diaryladipic acid esters and (3R,4R)-3,4-diarylhexane-1,6-diols were synthesized in 87–95% ee.

Electroreduction of α,β -unsaturated compounds in aqueous solution is a well-recognized method to obtain the corresponding hydrodimers.¹ In addition, the electroreduction of cinnamic acid esters in an aprotic solvent affords cyclized products of hydrodimers² as all-trans isomers stereospecifically (Scheme 1).^{2a-c,e} These results prompted us to investigate enantioselective hydrocoupling of cinnamic acid derivatives, because the obtained hydrodimers can be converted into several C_2 -symmetric compounds as shown in Scheme 1. We have started our study using readily available

(3) (a) Lutomski, K. A.; Meyers, A. I. *Asymmetric Synthesis*; Academic Press: New York, 1984; Vol. III, pp 213–274. (b) Ager, D. J.; Prakash, I.; Schaad, D. R. *Chem. Rev.* **1996**, *96*, 835–875.

(4) (a) Evans, D. A. Asymmetric Synthesis; Academic Press: New York, 1984; Vol. III, pp 87–90. (b) Heathcock, C. H. Asymmetric Synthesis; Academic Press: New York, 1984; Vol. III, pp 184–188.

(5) (a) Kise, N.; Echigo, M.; Shono, T. *Tetrahedron Lett.* **1994**, *35*, 1897–1900. (b) Kise, N.; Mashiba, S.; Ueda, N. J. Org. Chem. **1998**, *63*, 7931–7938.

10.1021/ol016566p CCC: \$20.00 © 2001 American Chemical Society Published on Web 09/12/2001

and well-known chiral auxiliaries such as optically active alcohols, oxazolines,³ and oxazolidinones.^{3b,4} We have already reported that (*S*)-4-isobutyloxazolidinone was the most effective chiral auxiliary among them.⁵ The best selectivity for the *dl*-hydrodimer, however, was R,R/S,S = 85:15. Therefore, a more effective chiral auxiliary is desirable. Although the electroreduction of cinnamates derived

 ^{(1) (}a) Baizer, M. M. J. Electrochem. Soc. **1964**, 111, 215–222. (b) Baizer, M. M.; Anderson, J. D. J. Electrochem. Soc. **1964**, 111, 223–226.
 (c) Rifi, M. R. Technique of Electroorganic Synthesis, Part II; Weinberg, N. L., Ed.; Wiley: New York, 1975; pp 192–215.

^{(2) (}a) Klemm, L. H.; Olson, D. R. J. Org. Chem. 1973, 58, 3390–3394. (b) Kanetsuna, H.; Nonaka, T. Denki Kagaku 1981, 49, 526–531.
(c) Smith, C. Z.; Utley, H. P. J. Chem. Soc., Chem. Commun. 1981, 492–494. (d) Nishiguchi, I.; Hirashima, T. Angew. Chem., Int. Ed. Engl. 1983, 22, 52–53. (e) Utley, J. H. P.; Güllü, M.; Motevalli, M. J. Chem. Soc., Perkin Trans. 1 1995, 1961–1970.

from (-)-menthol, (-)-8-phenylmenthol, and (-)-*endo*borneol gave poor results,^{5b} we investigated effective chiral auxiliaries based on a modification of (1R)-(+)-camphor, since it is readily available and inexpensive. We report herein that [(1R)-*exo*]-3-*exo*-(diphenylmethyl)borneol⁶ (1) is a highly effective chiral auxiliary for the electroreductive hydrocoupling of its cinnamates.

The synthesis of 1 from (+)-camphor was carried out in three steps as shown in Scheme 2. To improve the total yield

of **1**, we modified the reported methods.^{6,7} The trimethylsilyl enol ether of (+)-camphor was prepared in 93% yield by the successive treatment of (+)-campbor with *n*-BuLi and TMSCl in Et₂O. The reaction of the silvl enol ether with chlorodiphenylmethane in the presence of TiCl₄ at −50 °C for 1 h gave (1R)-3-exo-(diphenylmethyl)camphor (2) in 98% yield with a small amount of its stereoisomer. The 3-exoketone 2 was identified by its ¹H NMR spectrum, which showed the C3 endo proton as a doublet at δ 2.91 ppm coupled to the C11 proton (J = 12.1 Hz). If the C3 proton was exo, it should also couple to the C4 proton (J = 4-5Hz) and C5 exo proton (J = 1-2 Hz).⁸ The following LAH reduction of 2 in THF gave 1 with a small amount of its stereoisomer. Recrystallization of the crude product afforded isomerically pure [(1R)-exo]-3-exo-(diphenylmethyl)borneol (1) in 86% yield. The 2-exo-3-exo configuration of 1 has been suggested by Pearson^{6b} and was also confirmed by its ¹H NMR analysis. Namely, the C2 endo proton (δ 3.83 ppm) gave a double doublet coupled to the C3 endo proton (J =7.5 Hz) and the OH proton (J = 3.2 Hz), and the C3 endo proton gave a double doublet (δ 2.70 ppm) coupled to the C2 endo proton (J = 7.5 Hz) and the C11 proton (J = 13.0Hz). In addition, NOE observed between the C2 and C3 protons shows that these protons are located on the same side (Scheme 2).

Unfortunately, all attempts for direct cinnamoylation of 1 failed. Pearson has reported that ester formation and hydrolysis of 1 was very difficult to accomplish because of

steric hindrance.^{6b} Consequently, the cinnamate of **1** was prepared in three steps (Scheme 3): acetylation of **1**, condensa-

tion of the acetate **3** with benzaldehyde, and dehydration of the resulting hydroxy ester **4a** (Ar = Ph) gave *trans*-cinnamate **5a** in 79% overall yield. Several aryl-substituted *trans*-cinnamate **5b**-h were prepared similarly (Table 1).

Ar	% yield of 4 ª	% yield of 5^{a}
Ph	4a 98	5a 90
o-MeOC ₆ H ₄	4b 81	5b 86
<i>m</i> -MeOC ₆ H ₄	4c 82	5c 85
p-MeOC ₆ H ₄	4d 98	5d 79
p-FC ₆ H ₄	4e 95	5e 86
2-naphthyl	4f 83	5f 75
1-furyl	4g 98	5g 64
3,4-methylenedioxyphenyl	4h 87	5h 85

Electroreduction of **5a** was carried out at a constant current of 75 mA in 0.33 M Et₄NOTs/acetonitrile using an undivided cell and a Pb cathode, according to the reported method.^{5b} The noncyclized hydrodimer **6a** was obtained in 68% yield along with **7a** (Scheme 4). It is noted that the cyclized hy-

^{(6) (}a) Oppolzer, W.; Kurth, M.; Reichlin, D.; Chapuis, C.; Mohnhaupt, M.; Moffatt, F. *Helv. Chem. Acta* **1981**, *64*, 2802–2807. (b) Pearson, A. J.; Gontcharov, A. V. J. Org. Chem. **1998**, *63*, 152–162.

drodimer could not be detected, since Dieckmann condensation of **6a** is inhibited by the steric hindrance as mentioned above. The diastereomeric excess (de) of the hydrodimer **6a** seemed to be more than 90% by its ¹H NMR spectrum.⁹

To confirm the selectivity and stereochemistry, the dimer **6a** was transformed to known dimethyl ester $8a^5$ (Scheme 5). Hydrolysis of **6a** by normal methods failed owing to the

steric hindrance. Alternatively, LAH reduction of **6a** afforded diol **9a** in 88% yield together with **1** in 95% yield. Oxidation of **9a** followed by esterification in methanol gave dimethyl ester **8a**, which consisted of only the *dl*-isomer; the *meso*-isomer was not detected by ¹H NMR analysis. The absolute stereochemistry and enantiomeric excess of **8a** were determined to be 3R,4R and 92% ee by ¹H NMR spectrum with Eu(hfc)₃ and chiral HPLC analysis.^{5b} This result showed that the hydrodimer **6a** was obtained as a mixture of two stereoisomers, *R*,*R*-form (major) and *S*,*S*-form (minor), in 92% de.

The electroreduction of aryl-substituted cinnamate **5b**-**h** and the subsequent transformation of the dimers **6c**-**h** were carried out by the same procedures as above, and the results are summarized in Tables 2 and 3. Although ortho substitution inhibited the electroreductive hydrocoupling significantly (Table 2, entry 2), para and meta substitution (entries 3-5, 7, and 8) did not hinder it except for the β -naphthyl group

Table 2. Electroreduction of <i>trans</i> -Cinnamates	5
--	---

entry	Ar	% yield of $\boldsymbol{6}^{\mathrm{a}}$	$\%$ yield of $7^{\rm a}$
1	Ph	6a 68	7a 30
2	o-MeOC6H4	6b 3	7b 77
3	m-MeOC6H4	6c 54	7c 28
4	<i>p</i> -MeOC6H4	6d 54	7d 35
5	<i>p</i> -FC6H4	6e 62	7e 24
6	2-naphthyl	6f 18	7f 57
7	1-furyl	6g 52	7g 31
8	3,4-methylenedioxyphenyl	6h 64	7h 22
^a Isol	ated yields.		

T-11.2	T 6 (6 6 0 19
Table 3.	Transformation of 6 to 9 and 8

Ar	% yield of 9 ª	% yield of $\boldsymbol{8}^{\mathrm{a}}$ (% ee) ^b
Ph	9a 88	8a 80 (92)
<i>m</i> -MeOC ₆ H ₄	9c 84	8c 75 (92)
<i>p</i> -MeOC ₆ H ₄	9d 90	8d 78 (92)
p-FC ₆ H ₄	9e 90	8e 80 (87)
2-naphthyl	9f 68	8f 52 (95)
1-furyl	9g 56 (87) ^c	
3,4-methylenedioxyphenyl	9h 70 (89) ^c	

 a Isolated yields. b Determined by $^1{\rm H}$ NMR analysis with Eu(hfc)_3. c Determined from the corresponding diacetate by $^1{\rm H}$ NMR analysis with Eu(hfc)_3.

(entry 6). The enantioselectivities of diesters 8c-f and the diacetates of diols 9g,h were determined to be 87-95% ee by ¹H NMR spectra with Eu(hfc)₃. The 3R,4R configuration was confirmed for 8c-e by ¹H NMR and chiral HPLC analyses^{5b} and was assumed for 8f and 9g,h by ¹H NMR correlation of 6f-h with 6a.

The reaction mechanism of the hydrocoupling of **5** can be speculated to be similar to that reported previously for cinnamic acid esters.^{2a,b,10} An anion radical is produced by one-electron transfer to **5** and couples with another anion radical. Semiempirical (UHF/AM1) and DFT (UB3LYP 3-21G* and 6-31G*) calculations¹¹ of anion radical of **5a** gave two optimized structures **A** and **B** (Figure 1). From the results described above, it seems that the coupling occurs

Figure 1. Minimized structures of anion radical of 5a.

from the more stable **A** at the less hindered Si face (β -side) and gives the *R*,*R*-dimer selectively (Scheme 6).

At present [(1R)-exo]-3-exo-(diphenylmethyl)borneol (1) is the most effective chiral auxiliary for the electroreductive

(9) The ¹H NMR spectrum of **6a** showed major (>90%) three singlets for methyl protons at 0.19, 0.67, and 1.20 ppm with minor (<10%) three singlets at 0.11, 0.65, and 1.14 ppm.

hydrocoupling of cinnamates. From the resulting hydrodimers **5**, the *R*,*R*-enantiomers of C_2 -symmetric 3,4-diaryladipic acid diesters **8** and 3,4-diarylhexane-1,6-diols **9** were obtained in 87–95% ee. The utility of **1** as a chiral auxiliary in other reactions is now being investigated.

Acknowledgment. (N.K. is grateful to the Electric Technology Research Foundation of Chugoku for financial support.

Supporting Information Available: Experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL016566P

⁽⁷⁾ Full details of the modifications are in Supporting Information.

^{(8) (}a) Coxon, J. M.; Hartshorn, M. P.; Lewis, A. J. Aust. J. Chem. **1971**, 24, 1017–1026. (b) Taber, D. T.; Raman, K.; Gaul, M. D. J. Org. Chem. **1987**, 52, 28–34.

⁽¹⁰⁾ Fussing, I.; Güllü, M.; Hammerich, O.; Hussain, A.; Nielsen, M. F.; Utley, J. H. P. J. Chem. Soc., Perkin Trans. 2 **1996**, 649–658.

⁽¹¹⁾ The calculations were carried out using the Gaussian 98W program: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98W*, Revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.